Intro to programming II

Week 6

The distance between two points

This is about the most useful formula in video games so let's see it in detail. We want to find the distance \mathbf{c} between two points \mathbf{p} and \mathbf{q}. We can split the vector between them into a vertical component with a magnitude of a and a horizontal component with a magnitude of \mathbf{b}.

We know that \mathbf{a} and \mathbf{b} are simply the absolute value of the difference of the rows and columns of p and q. In our example:
$a=\left|p_{y}-q_{y}\right|=|2-4|=|-2|=2$
$b=\left|p_{x}-q_{x}\right|=|3-7|=|-4|=4$
where the absolute value is the function that makes its argument positive., i.e., $|-4|=4$.

Now we need to express \mathbf{c} in terms of \mathbf{a} and \mathbf{b}. This relationship is given by the Pythagorean theorem, which follows from the following image:

We know that the area of a rectangle is the product of the lengths of its sides:

$$
\operatorname{area}(\square)=\text { side1 } \mathrm{x} \text { side2 }
$$

Likewise, the area of a triangle is half its base by its height:
$\operatorname{area}(\triangle)=($ base x height $) / 2$
We can write the area \mathbf{A} shown by the green dotted line in two ways. We can either, multiply its sides:
$A=c^{2}$
or we can add the area of the white square inside the red triangles to the area of the 4 triangles:

$$
\begin{aligned}
A & =(a-b)^{2}+4(a b / 2) \\
& =a^{2}-2 a b+b^{2}+2 a b \\
& =a^{2}+b^{2}
\end{aligned}
$$

Since these are 2 ways of expressing the same area A we have:

$$
c^{2}=a^{2}+b^{2}
$$

i.e., the square of the hypotenuse is equal to the sum of the squares of the sides.

From here we find that the value of \mathbf{c} is
$c=\operatorname{sqrt}\left(a^{2}+b^{2}\right)$
In our example, this means that the distance between \mathbf{p} and \mathbf{q} is
$c=\operatorname{sqrt}\left(\left(p_{x}-q_{x}\right)^{2}+\left(p_{y}-q_{y}\right)^{2}\right)$
or

$$
c=\operatorname{sqrt}\left(2^{2}+4^{2}\right)
$$

$$
=\operatorname{sqrt}(20)
$$

$$
=4.47
$$

Week 6

List methods

Methods is the name of functions that are part of an object. Some useful list methods:

```
my_list = [3, 6, 2, -5]
```

- does the element exist in the list?
>>> 2 in my_list
true
- add an element to the end of the list
>>> my_list.append[7]
>>> print(my_list)
[3, 6, 2, -5, 7]
- find the index of an element
>>> my_list.index(-5)
3
>>> my_list.index(10)
File "<stdin>", line 1 my_list.index(10))

SyntaxError: invalid syntax

- remove the first element

```
>>> my_val = my_list.pop()
```

>>> print(my_list)
[6, 2, -5, 7]
>>> print(my_val)
3

- remove the element of index i
>>> my_list $=[3,6,2,-5]$
>>> my_val = my_list.pop(1)
>>> print(my_list)
[3, 2, -5]
>>> print(my_val)
6
- remove the element of value x
>>> my_list $=[3,6,2,-5]$
>>>my_list.remove(-5)
>>>print(my_list)
[3, 6, 2]

Iteration

There are two iteration processes that are used all the time.
mapping: it turns all the elements of an array into something else.

```
def square(a):
```

 result = []
 for idx in range(len(a)):
 result.append(a[idx] * \(a[i d x])\)
 return result
 or, accessing the elements directly:
def square (a):
result = []
for elem in a:
result.append(elem * elem)
return result
filtering: we keep only certain elements of the array.

```
def positives(a):
    result = []
    for elem in a:
        if elem > 0:
            result.append(elem)
    return result
```


Dictionaries

A dicitonary associates a single name, called the 'key', to many values:
>>> my_dictionary = \{"peter": 10, 2015: "year" $\}$
>>> print(my_dictionary["peter"]
10
>>> print(my_dictionary[2015])
year
To iterate over a dictionary:
for key, value in my_dictionary.items(): print(key, value)

