
Local variables

They are created when a function is called, they
exist while the function runs, and are deleted
when the function terminates. They can only be
used inside the function. Variables received as
arguments are local:

def foo(local_1, local_2):
 local_3 = " and "
 print(local_1 + local_3 + local_2)

foo("Spongebob", "Patrick")

Global variables

They exist in the ‘main’ program, outside any
function. Once they are created they exist until
the program finishes; all functions can see them:

global_1 = "Mickey"
global_2 = "Daisy"
global_3 = "Pluto"

def foo():
 global global_2, global_4
 global_1 = "Donald" # this is a local
 global_2 = "Minnie" # this is a global
 global_4 = global_3

foo()
msg = global_1 + ", " + global_2
msg = msg + ' and ' + global_4
print(msg)

We use the keyword global inside a function to
modify a global that already exists (e.g.,
global_2), or to create a new global (e.g.,
global_4).

All functions can read the value of a global, e.g.,
we can set global_4 to global_3 without pointing
out that global_3 is a global. If we try to modify a
global inside a function without declaring it as
such, Python assumes that what we are doing is
creating a local variable that happens to have the
same name as a global, e.g., global_1.

Intro to programming II

Week 3

Event Driven Programming (EDP)

In EDP we set the stage of how the program
needs to reacts to events and then enter a loop
that waits until there is event to handle. This
type of programs follow this template:

import simplegui

global variables
counter = 0
start_value = 0

helper functions
def increment():
 global counter
 counter = counter + 1

event handlers
def tick():
 increment()
 print(counter)

def button_press():
 global counter
 counter = start_value

def set_start_value(value):
 global start_value
 start_value = int(value)
 button_press()

create a frame
frame = simplegui.create_frame("test",
100, 150)

handler registration
timer = simplegui.create_timer(1000, tick)
frame.add_button('Reset', button_press)
fld = frame.add_input('start value',
set_start_value, 50)
fld.set_text(str(start_value))

start frame and timers
frame.start()
timer.start()

http://www.codeskulptor.org/#user40_o7bBVOT4q6LAXbY.py
http://www.codeskulptor.org/#user40_bTGbTBPjOoM6s4G.py

http://www.codeskulptor.org/#user40_o7bBVOT4q6LAXbY.py
http://www.codeskulptor.org/#user40_o7bBVOT4q6LAXbY.py
http://www.codeskulptor.org/#user40_bTGbTBPjOoM6s4G.py
http://www.codeskulptor.org/#user40_bTGbTBPjOoM6s4G.py

